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Abstract

In economic theory, the term small open economy refers to an economy that is too small
to influence the surrounding world. The surrounding world can, for this reason, be seen as
exogenous relative to the economy of this small open economy. The main contribution of
this paper is the proposal of how to estimate a vector error correction model with exogeneity
restrictions on the long-run and short-run adjustment parameters as well as on the short-run
dynamic parameters between small open economies and the surrounding world. A Monte Carlo
simulation study of impulse responses shows that the proposed method is considerably more
efficient compared to models that fully or partially ignore the restrictions implied by the small
open economy hypothesis. Using two Swedish macroeconomic datasets, we find that there
are, for some variables, large differences in impulse responses between our proposed method
incorporating the restrictions and models using no or partial restrictions. As the small open
economy hypothesis is in many situations uncontroversial, our method enables the incorpora-
tion of indisputable economic theory into the econometric estimation of the model.

Keywords: Granger non-causality; Impulse responses; Strong exogeneity; Cointegration.

1 Introduction

A small open economy is an economy that is too small to influence the surrounding world. For
example, a small open economy does not influence global prices, interest rates or economic
conditions. The small open economy label applies to most countries today except for leading
economies such as the United States and China, or regions like the EU in which the countries
grouped together no longer constitute a small open economy. Hence, there is a natural role
for developing economic theories that apply to small open economies.

Statistics has played a crucial role in economics since the seminal paper of Haavelmo
(1944), which lay the statistical foundation for applied macroeconomics and theoretically
justified the work of the Cowles commission. The main focus when modeling macroeco-
nomic relations was, at the time, on large systems of equations and the majority of the work
in macroeconometrics focused on related issues such as identification, endogeneity, system
estimation, etc. Focus shifted when Sims (1980) criticized large-scale structural econometric
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models and popularized the vector autoregressive (VAR) approach. An important contri-
bution of the Sims (1980) paper is the illustration of the usefulness of impulse response
analysis.

Engle and Granger (1987) introduced cointegration, which is a concept that enables mod-
eling of economic equilibria. The main breakthrough was Johansen’s maximum likelihood
approach to cointegration (see e.g. Johansen 1988, 1991, 1995) that effectively merged the
VAR model with the concept of cointegration. This synthesis made it possible to test eco-
nomic theories through tests involving the cointegrating relations and stochastic trends, but
also for policy evaluations using impulse response analysis. Using Johansen’s approach it is
possible to estimate and test restrictions on the cointegrating, or equilibrium, relations, as
well as on the adjustment parameters. Johansen proposed the use of reduced rank regression
to estimate the parameters of the cointegrating relations and the adjustment parameters. To
solve the problem with short-run dynamics, the first step of the procedure consists of using
the Frisch-Waugh-Lovell theorem to concentrate out the short-run dynamics.

When employing the model for a small open economy it is customary to have two sets
of variables. The first set consists of the domestic variables of interest (e.g. GDP, exports,
imports and inflation) and the second set contains foreign variables (such as foreign GDP
and interest rates). It is important to notice that the concept of a small open economy
implies that there is no feedback from the small economy to the foreign economy. If this
exogeneity is taken into account in the model it is usually accomplished by restricting the
appropriate adjustment parameters to zero, but it may simply also be ignored. The stan-
dard Johansen approach concentrates out the short-run dynamics, but doing so is not a
viable option when exogeneity is imposed as the short-run dynamics involving the domes-
tic variables are no longer common to all variables and hence cannot be concentrated out.
Therefore, restrictions on the short-run dynamics are relatively scarce in the literature as
estimation is somewhat more involved. Asymptotically, however, neglecting to impose small
open economy exogeneity does not affect the properties of the estimator of the cointegrating
vectors.

Our situation of modeling a small open economy aligns with the more general situation
of Granger non-causality in VECMs. Granger non-causality describes the situation when
one set of variables lacks predictive information about another set of variables. Granger
non-causality and tests for its presence have been studied by, e.g., Mosconi and Giannini
(1992); Rault (2000) and Ahn et al. (2015) recently developed an estimator based on the
approach proposed by Ahn and Reinsel (1990).

Our contribution consists of two parts. First, we develop an estimator for vector error
correction models for small open economies. The estimator is a switching estimator based
on the work by Boswijk (1995) and Groen and Kleibergen (2003) and we provide accompa-
nying asymptotic distribution theory for the estimator. Second, it is well-known that the
maximum likelihood estimator for the cointegrating vectors is asymptotically independent of
the estimator for the adjustment parameters. Therefore, asymptotic inference for the coin-
tegrating vectors can be conducted without respect to the other parameters of the model,
and because the restricted model is nested in the unrestricted model estimation is also con-
sistent. However, our primary interest is not the cointegrating vectors; instead, as VARs
are often used for impulse response analysis we study the loss in precision incurred by ne-
glecting exogeneity in the model in finite-sample situations. We conduct a simulation study
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and compare impulse responses in two empirical applications to shed light on the effect the
failure to acknowledge exogeneity may have on subsequent impulse response analysis. The
results show that the impulse responses can differ notably if the correct exogeneity structure
is not imposed.

The paper is organized as follows. The next section introduces the model and the main
restrictions of interest as well as the estimation procedure. Section 3 analyzes the effect
of imposing the restrictions by Monte Carlo simulation while two empirical examples are
discussed in Section 4. A conclusion ends the paper.

2 Model and Estimation

The vector error correction model (VECM) for the k × 1 vector yt can be written as

∆yt = αβ′yt−1 +

p∑
i=1

Γi∆yt−i + εt t = 1, . . . , T, (1)

where α and β are full column rank matrices of size k×r, Γi are k×k matrices containing the
short-run dynamics parameters, εt is a k×1 vector of white noise disturbances with covariance
matrix Ω, and ∆yt = yt−yt−1. We exclude deterministic terms to keep the exposition simple,
but note that these can easily be incorporated. The vector yt is assumed to be integrated
of order one (Johansen, 1995), implying that both the first difference ∆yt and the linear
combination β′yt are stationary with the latter describing economic equilibria. The matrix
α describes the speed of adjustment towards the equilibria defined by the cointegrating
relations.

We develop a switching estimator that builds on the methods developed by Boswijk
(1995); Groen and Kleibergen (2003). To this end, let y′t =

[
y′f,t, y

′
d,t

]′
where yf,t is the set of

s (exogenous) variables from the foreign economy and yd,t the k − s (endogenous) domestic
variables. A small open economy paradigm implies that ∆yd,t−1, . . . ,∆yd,t−p should not affect
∆yf,t and as such justifies the restricted model[

∆yf,t
∆yd,t

]
= αβ′

[
yf,t−1
yd,t−1

]
+

p∑
i=1

Γi

[
∆yf,t−i
∆yd,t−i

]
+ εt

=

[
α1

α2

] [
β′1 β′2

] [ yf,t−1
yd,t−1

]
+

p∑
i=1

[
Γ11i 0
Γ21i Γ22i

] [
∆yf,t−i
∆yd,t−i

]
+ εt,

(2)

where α1 and β1 are s× r and α2 and β2 are (k − s)× r.
The blocks of α and β are left unrestricted for the moment; we will return to them in the

next subsection. To estimate the model, we first note that as the vector ∆yf,t−i influences
all left-hand side variables we can use the Frisch-Waugh-Lovell theorem to concentrate them
out. Let ∆ỹt, ỹt−1, ∆ỹd,t−i and ε̃t denote the remaining variables with ∆yf,t−i partialed out.
Stacking of the observations yields the model in matrix form

Ỹ = Ỹ−1Π + ε̃ (3)
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where

Π =


βα′

0′ Γ′221
...

...
0′ Γ′22p

 (4)

and

Ỹ =


∆ỹ′1
∆ỹ′2

...
∆ỹ′T

 , Ỹ−1 =


ỹ′0 ∆ỹ′d,−1 · · · ∆ỹ′d,−p
ỹ′1 ∆ỹ′d,0 ∆ỹ′d,−p+1
...

. . .

ỹ′T−1 ∆ỹ′d,T−1 ∆ỹ′d,T−p

 . (5)

The concentrated log-likelihood is, up to a constant,

`(Π,Ω) = −T
2
|Ω| − 1

2
vec(Ỹ − Ỹ−1Π)′(Ω−1 ⊗ IT ) vec(Ỹ − Ỹ−1Π). (6)

The second term in the above display can be rewritten into

G (Π,Ω) =

vec
[
Ỹ ′−1

(
Ỹ − Ỹ−1Π

)]′ [
Ω⊗

(
Ỹ ′−1Ỹ−1

)]−1
vec
[
Ỹ ′−1

(
Ỹ − Ỹ−1Π

)]
, (7)

where maximization of (6) is equivalent to minimization of (7). For the time being, we as-

sume Ω is known. To accommodate minimization of (7), we first rewrite vec
[
Ỹ ′−1

(
Ỹ − Ỹ−1Π

)]
as

vec
[
Ỹ ′−1

(
Ỹ − Ỹ−1Π

)]
= vec

(
Ỹ ′−1Ỹ

)
− vec

(
Ỹ ′−1Ỹ−1Π

)
(8)

= vec
(
Ỹ ′−1Ỹ

)
− Fπ, (9)

where F =
(
Ik ⊗ Ỹ ′−1Ỹ−1

)
and π = vec(Π). The underlying idea for the estimation procedure

is that Fπ can, to begin with, be written in two different ways, each conditional on one of
α and β. To fix ideas, first let

πβ =


vec (β′)

vec (Γ221)
...

vec (Γ22p)

 , πα =


vec (α)

vec (Γ221)
...

vec (Γ22p)

 (10)

Then, the generic Fπ can be written as

Fπ = Fβ(α)πβ (11)

= Fα(β)πα (12)
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where

Fβ(α) =
(
Ik ⊗ Ỹ ′−1Ỹ−1

)
Kk,k+p(k−s)

 Ik ⊗ α
k×r

0
k2×p(k−s)2

0
pk(k−s)×kr

Ip(k−s) ⊗
[
0s×k−s
Ik−s

]  (13)

and

Fα(β) =
(
I ⊗ Ỹ ′−1Ỹ−1

)
Kk,k+p(k−s)

 β
k×r
⊗ Ik 0

k2×p(k−s)2

0
pk(k−s)×kr

Ip(k−s) ⊗
[
0s×k−s
Ik−s

]  . (14)

We are here using Km,n to denote the commutation matrix for an m × n matrix A defined
by Km,n vec (A) = vec(A′) (Magnus and Neudecker, 1979).

As is clear from (10), estimating πα and πβ means estimating the full k × r matrices α
and β without restrictions. However, when the model is used for modeling a small open
economy where exogenous, large-economy variables are also included such an approach may
not be reasonable. If α and β are left unrestricted then the model will allow for the r cointe-
grating relations β′yt−1 to enter all equations in the system, including the equations for the
foreign variables. As a small open economy should not be able to have this influence, shut-
ting down such a connection is in many modeling situations warranted and uncontroversial.
Inspired by our two empirical applications, we consider the setting of Granger non-causality
(Mosconi and Giannini, 1992; Rault, 2000) for enforcing the small open economy property in
our model. Granger non-causality directly includes weak and strong exogeneity (Johansen,
1992; Harbo et al., 1998; Pesaran et al., 2000; Jacobs and Wallis, 2010) as a special case,
but situations involving super exogeneity (Pradel and Rault, 2003) and cointegrating exo-
geneity (Hunter, 1992) can just as well be accomodated by judicious construction of the F
matrix. Independently of our work and with a different focus, Ahn et al. (2015) developed
an estimation procedure based on the reparametrization technique used by Ahn and Reinsel
(1990).

2.1 The Small Open Economy Property: Granger Non-Causality
Restrictions

As a first example of restrictions stemming from the small open economy property, we can
assume that the foreign variables are weakly exogenous for the cointegrating vectors β such
that α2 = 0s×r. Exogeneity as discussed by Engle et al. (1983) is defined with respect to
a set of parameters that are of primary interest. The cointegrating vectors β are often the
primary interest in studies using VECMs, and so since β only enters the domestic set of
equations it suffices to analyze this subsystem, the conditional model, instead of the full
model. However, our interest lies in impulse response analysis in cointegrated small open
economy VARs in which case the full set of parameters is needed. The foreign variables are
clearly not weakly exogenous for the full set of parameters, and analysis of a partial system
is not feasible. For further discussion on partial systems and weak exogeneity, see Johansen
(1992); Harbo et al. (1998); Jacobs and Wallis (2010).
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Assuming weak exogeneity is in many cases overly restrictive as it excludes any cointegrat-
ing relation from entering the foreign equations. Thereby, cointegration among the foreign
variables is prohibited. A more flexible scheme that still enforces the small open economy
constraints is that of Granger non-causality; see for example Mosconi and Giannini (1992);
Toda and Phillips (1993); Rault (2000) for general discussions of Granger non-causality.
Suppose that there are r1 foreign and r2 domestic cointegrating relations with r1 + r2 = r.
If we partition α and β into blocks with r1 and r2 columns and s and k − s rows we have

α =

[
α11 α12

α21 α22

]
, β =

[
β11 β12
β21 β22

]
. (15)

Granger non-causality enforces the joint restriction that

α12 = 0s×r2 , β21 = 0k−s×r1 , Γ12i = 0s×k−s, (16)

see also Mosconi and Giannini (1992); Ericsson et al. (1998). The matrix Π = αβ′ is block
triangular under the restrictions in (16) and parallels the notion of cointegrating exogeneity
(Hunter, 1992), but without the further restriction on Γ12i the domestic set of variables will
still Granger-cause the foreign block. In one of our applications later, we will revisit a model
for the Swedish economy in which there are four domestic and three foreign variables. In this
case, two cointegrating relations among all variables exclusively enter the domestic part of
the system and one cointegrating relation involving only foreign variables is allowed to enter
all equations. For situations when the cointegrating rank is unknown, the reparametrization
and testing procedure suggested by Rault (2000) can be employed.

As a special case, consider the situation when r1 = 0. Then r2 = r and α =
[
0r×s α′22

]′
,

which corresponds to the previously mentioned weak exogeneity restriction. However, since
Γ12i = 0s×k−s is also imposed, the foreign variables are strongly exogenous for the parameters
in the domestic submodel since both weak exogeneity and Granger non-causality are present
(Engle et al., 1983, Definition 2.6). Strong exogeneity no longer holds when the foreign
variables cointegrate (i.e. when α11 is a non-zero and non-empty matrix) as β′1 is then
included in both the domestic and foreign submodels.

2.2 Estimation

Estimation is carried out by constructing the F matrices as

F
(GN)
β (α) =

(
Ik ⊗ Ỹ ′−1Ỹ−1

)
Kk,k+p(k−s)

×


[

Is
0k−s×s

]
⊗ α

0ks×r2(k−s)

Ik−s ⊗ α
[
0r1×r2
Ir2

]
0r(k−s)×p(k−s)2

0pk(k−s)×rs 0pk(k−s)×r2(k−s) Ip(k−s) ⊗
[
0s×k−s
Ik−s

]


F (GN)
α (β) =

Fα(β)

 Kr,k

Is ⊗ [ Ir1
0r2×r1

]
0r(k−s)×r1s

Ks,r1 Ir ⊗
[
0s×k−s
Ik−s

]
0rk×p(k−s)2

0p(k−s)2×r1s 0p(k−s)2×r(k−s) Ip(k−s)2



(17)
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where the parameter vectors are

π
(GN)
β =

 vec(β′1)
vec(β′22)
vec(Γ)

 π(GN)
α =

vec(α11)
vec(α2)
vec(Γ)

 . (18)

By substituting vec
[
Ỹ ′−1

(
Ỹ − Ỹ−1Π

)]
for (9) and Fπ for the desired choice of F and π it

is possible to solve for πβ and πα, respectively. The solutions are

π̂β(α,Ω) =

{
Fβ(α)′

[
Ω⊗

(
Ỹ ′−1Ỹ−1

)]−1
Fβ(α)

}−1
Fβ(α)′ (19)

×
[
Ω⊗

(
Ỹ ′−1Ỹ−1

)]−1
vec
(
Ỹ ′−1Ỹ

)
(20)

π̂α(β,Ω) =

{
Fα(β)′

[
Ω⊗

(
Ỹ ′−1Ỹ−1

)]−1
Fα(β)

}−1
Fα(β)′ (21)

×
[
Ω⊗

(
Ỹ ′−1Ỹ−1

)]−1
vec
(
Ỹ ′−1Ỹ

)
(22)

Enforcing Granger non-causality simply amounts to substituting the F matrices yielding the
unrestricted estimates with F (GN) in (19)–(21); in a similar fashion, other forms of restricted
models discussed in the beginning of the section can be estimated using the same approach
by constructing the F matrix appropriately.

Finally, rarely ever is Ω a known matrix and it too must be estimated. To facilitate this,
we use the conditional maximum likelihood estimator of Ω conditional on Π given by

Ω̂(Π) =
1

T
(Y − Y−1Π)′(Y − Y−1Π) (23)

Evidently, there is a circular dependence in the equations which implicitly suggests an
iterative estimation procedure. This iterative procedure is as follows:

1. Estimate Ω, α in an unrestricted VECM

2. Estimate πβ using π̂β(α̂, Ω̂) in (19)

3. Estimate πα using π̂α(β̂, Ω̂) in (21)

4. Estimate Ω using Ω̂(Π̂) in (23)

5. Iterate 2–4 until convergence

Such a switching algorithm has previously been applied in the cointegration literature by
e.g. Johansen and Juselius (1992, 1994); Groen and Kleibergen (2003); Boswijk and Doornik
(2004). While none of the previous studies have proven that the algorithm converges to a
global maximum, each step is non-decreasing in the likelihood and generally works very well.
To start the iterative procedure, we have used the unrestricted estimates and found this
approach to work well in practice. The asymptotic properties of the estimator based on
(17)–(18) are established in the following proposition in which we restrict ourselves to the
case without deterministic terms for simplicity, but without loss of generality.
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Proposition 1. Assume that the model is[
∆yf,t
∆yd,t

]
= [

α11 0
α21 α22

] [
β′11 0
β′12 β′22

] [
yf,t−1
yd,t−1

]
+

p∑
i=1

[
Γ11i 0
Γ21i Γ22i

] [
∆yf,t−i
∆yd,t−i

]
+ εt (24)

where

1. the error sequence {εt} is such that: 1) it is a martingale difference sequence, 2) the
strong law of large numbers applies so that
T−1

∑T
t=1E(εtε

′
t|Ft−1)

a.s.−→ Ω where Ft−1 is the filtration up to time t − 1, 3) the
fourth-order moments of εt are finite,

2. α and β (k × r) are full rank,

3. yt ∼ I(1) so that α′⊥Γβ⊥ is non-singular.

Using (17)–(18) for estimation, the asymptotic distribution of the long-run parameters is

T

([
vec(β̂′1)

vec(β̂′22)

]
−
[

vec(β′1)
vec(β′22)

])
d−→[ ∫

Gk,1(u)Gk,1(u)′du⊗ α′Ω−1α
∫
Gk,1(u)Gk,2(u)′du⊗ α′Ω−1α·2∫

Gk,2(u)Gk,1(u)′du⊗ α′·2Ω−1α
∫
Gk,2(u)Gk,2(u)′du⊗ α′·2Ω−1α·2

]−1
×
[

vec
(
α′Ω−1

∫
dWkG

′
k,1

)
vec
(
α′·2Ω

−1 ∫ dWkG
′
k,2

) ] (25)

where Gk,1(u) and Gk,2(u) denote the first s and last k − s elements of Gk(u) = CWk(u),
respectively; here, C = β⊥(α′⊥Γβ⊥)−1α′⊥, Γ = Ik −

∑p−1
i=1 Γi and Wk(u) is a k-dimensional

Brownian motion with covariance matrix Ω, where also α′·2 =
[
α′12 α′22

]
.

Moreover, the asymptotic distribution of the adjustment and short-run parameters esti-
mated based on (17)–(18) is

√
T
(
π̂(GN)
α − π(GN)

α

) d−→ Nr1s+r(k−s)+p(k−s)2(0, V ) (26)

where

V =

Σββ,11 ⊗ (Ω−1)11 Σββ,1· ⊗ (Ω−1)12 Σβ0,1· ⊗ (Ω−1)12
Σββ,·1 ⊗ (Ω−1)21 Σββ ⊗ (Ω−1)22 Σβ0 ⊗ (Ω−1)22
Σ0β,·1 ⊗ (Ω−1)21 Σ0β ⊗ (Ω−1)22 Σ00 ⊗ (Ω−1)22

−1 , (27)

and Σββ = plimT−1
∑T

t=1 β
′yty

′
tβ, Σβ0 = plimT−1

∑T
t=1 β

′yt−1∆y
′
t and Σ00 = plimT−1

∑
t=1 ∆yt∆y

′
t;

Σββ,11 is the r1 × r1 upper left block of Σββ, whereas Σββ,·1 and Σβ0,·1 refer to the first r1
columns of the corresponding matrix. Similarly, (Ω−1)ij is defined to be the (i, j)th block of
Ω−1 (whose blocks have s or k − s rows and/or columns).
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The proof is placed in the Appendix.

Remark 1. If the model is estimated under the weak exogeneity restriction r1 = 0 and so

T vec
(
β̂(WE)′ − β(WE)′

)
d−→
(∫

Gk(u)Gk(u)′du⊗ α′Ω−1α
)−1

vec

(
α′Ω−1

∫
dWkG

′
k

)
= vec

[∫
dVkG

′
k

(∫
Gk(u)Gk(u)′du

)−1]
(28)

where Vk(u) = (α′Ω−1α)−1α′Ω−1Wk(u). The latter form exactly mirrors the result by Jo-
hansen (1995).

Furthermore,

√
T
(
π̂(WE)
α − π(WE)

α

) d−→ Nr(k−s)+p(k−s)2
(
0,Σ−1 ⊗ (Ω−1)−122

)
, (29)

where

Σ =

[
Σββ Σβ0

Σ0β Σ00

]
(30)

Remark 2. If there are no foreign variables such that r1 = s = 0, then

√
T (π̂α − πα)

d−→ Nrk+pk2
(
0,Σ−1 ⊗ Ω

)
(31)

and we obtain the same asymptotic distribution as derived by Lütkepohl (2005).

3 Monte Carlo Simulation

To analyze the small-sample properties we conduct a simulation study where we generate
data according to (2). We use a five-variable system with three lags containing two foreign
variables that are not cointegrated, and three domestic variables with two cointegrating
relations. The sample sizes considered are T = 100, 125, 150, . . . , 500. The parameter values
are randomly chosen prior to the simulation and not altered. Equation (33) and Figure A1 in
Appendix A display the model and its eigenvalues, respectively. The number of replicates is
5,000. Because one main purpose of many macroeconomic modeling exercises is to estimate
impulse responses we evaluate the effect of small open economy restrictions using deviations
from the true impulse responses in form of the mean squared error (MSE). The models we
compare are the following VECMs: i) unrestricted, ii) restrictions on α (weak exogeneity),
iii) restrictions on Γi (short-run restrictions), and iv) restrictions on both α and Γi (strong
exogeneity). Because there are 25 impulse responses to present, we include a representative
selection here and note that the remaining plots of mean squared errors are available upon
request.

In Figures 1 and 2 we display the MSE for impulse responses as a function of the impulse
response horizon and the sample size, respectively. The sample size in Figure 1 is 100 and
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the strongly exogenous VECM always has the lowest MSE while the unrestricted VECM
has the largest. Occasionally, the weakly exogenous VECM is better than the VECM with
short-run restrictions, as in the right two figures, and sometimes it is the other way around
as in the top-left figure. The MSE always increases for the unrestricted VECM when in-
creasing the impulse response horizon, while this is not always true for the other models.
The interpretation of this phenomenon is that the restrictions are important for modeling
the long-run relations.

Figure 2 shows the MSE as a function of sample size. As in the previous figure, the
standard VECM has the largest MSE while the strongly exogenous VECM has the smallest.
Also, as above, the ordering in terms of MSE between the VECM with only short-run
dynamics versus only weakly exogenous restrictions is inconclusive, but always between the
unrestricted VECM and the strongly exogenous model. As can be expected, as all models
nest the true model, the MSE decreases with increased sample size. Sometimes the relative
difference between sets of restrictions is small, as in the bottom-left figure, and in other cases
the relative difference is larger, as in the top figures. Particularly for small sample sizes, the
relative difference is often considerable. In summary, imposing the full set of restrictions
when modeling small open economies will provide more accurate and precise estimates of
the impulse responses.

4 Empirical Illustrations

4.1 A Strongly Exogenous Model for Sweden

The Swedish Ministry of Finance produces one of the most important GDP forecasts for the
Swedish economy. As simple baseline models, the Ministry of Finance uses various types
of vector autoregressive models, see e.g. Bjellerup and Shahnazarian (2012). We follow the
same track and use a cointegrated VAR model, where the main variable of interest is the
logarithm of GDP. Other variables in the model are a competitor-weighted exchange rate
index, consumer price index, a foreign trade-weighted GDP (the US and the EU), interest on
Swedish 3-month Treasury bills and unemployment. Similarly to Bjellerup and Shahnazarian
(2012) we also have a dummy for the period 1991:Q3 to 1992:Q3. This dataset was previously
used by Lyhagen et al. (2015), who investigated the effect of intercept correction on forecasts
of GDP. Table 1 summarizes the data, which ranges from 1988:Q1 up to 2015:Q4.1

The specification of the VECM closely follows Lyhagen et al. (2015) with two cointegrat-
ing relations, found by using the p-values of MacKinnon et al. (1999), and four lags in levels.
As a measure of evaluation we use the same as in the Monte Carlo simulation above, namely
impulse responses. The size of the model is commonly found in the literature of empirical
VEC models. The number of observations, T = 116, is typical for this type of application.

In Figure 3 examples of the impulse responses from the model of the Swedish economy
are shown (the full set of impulse responses can be found in Figure B2 in Appendix B). As
in the simulation in the previous section, we here consider one standard deviation shocks

1The data constitutes an extension of the dataset compared to Lyhagen et al. (2015), who used data for
the period 1989:Q4–2012:Q2.
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Figure 1: Mean squared error of impulse responses as a function of horizon, sample size
T = 100. The four lines in the figures represent: unrestricted VECM ( ), weakly exogenous
VECM ( ), VECM with short-run restrictions ( ) and strongly exogenous VECM ( ).
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Figure 2: Mean squared error of impulse responses as a function of sample size at impulse
response horizon h = 10. The four lines in the figures represent: unrestricted VECM ( ),
weakly exogenous VECM ( ), VECM with short-run restrictions ( ) and strongly ex-
ogenous VECM ( ).
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Table 1: Strongly exogenous model: Bjellerup and Shahnazarian (2012) data

Variable Description

SWEGDP* Seasonally adjusted real GDP, in logarithms
KIX Competitor-weighted effective exchange rate in-

dex (log)
CPIX Underlying inflation index (log)
TWGDP** Foreign GDP as weighted between the US GDP

and the Euro zone’s GDP (log)
TB Closing yield for a 3-months treasury bill
UNEMP Relative unemployment
Dummy Dummy variable for 1991:Q4–1992:Q3

Note: KIX, TB and UNEMP are aggregated to quarterly
frequencies by taking averages of the corresponding months.
The model includes a dummy variable for the period 1991:q3–
1992:Q3.
*SWEGDP is sometimes referred to as GDP only for readability.
**The weights in TWGDP are 0.25 for the US and 0.75 for the Euro zone.

without any further identification scheme; the main purpose is to illustrate the differences
obtained with changing sets of restrictions, and that message will remain when a proper
identification approach is used. Overall, imposing both short-run dynamic restrictions and
weak exogeneity sometimes leads to a different picture being painted than if none or only
one type of restriction is enforced.

For example, in the top-right panel of Figure 3 the impulse responses of a one standard
deviation shock of Swedish GDP on trade-weighted foreign GDP is displayed (SWEGDP →
TWGDP). As TWGDP is assumed to be exogenous, the strongly exogenous VECM yields a
straight line at zero (dotted line). Only restricting the short-run dynamics (dashed line) re-
sults in a negative impact of a shock to Swedish GDP on trade-weighted foreign GDP. When
ignoring short-run restrictions a positive effect emerges with a larger impact of the unre-
stricted VECM (solid line) compared to the VECM with weak exogeneity (longdashed line).
Thus, failing to cancel the channel from SWEGDP and TWGDP leads to the questionable
result that Swedish GDP shocks affect trade-weighted GDP.

Switching to a one standard deviation shock of trade-weighted GDP and its effect on
Swedish GDP in the bottom-right figure (TWGDP→ SWEGDP) we find an initial positive
impact for all models that eventually levels out at a positive long-term effect of around 1–
1.5 and all models agree relatively well. In contrast, the effect of a one standard deviation
shock of trade-weighted GDP on underlying inflation in the bottom-left figure (TWGDP →
CPIX) yields a negative impulse response for the unrestricted VECM and the VECM with
constrained short-run dynamics while there are positive effects indicated by the weakly and
strongly exogenous models.

A shock to the three-month treasury bill yields either increases or decreases in inflation
depending on the restrictions in the model (middle-right panel, TB → CPIX). Lastly, all
models indicate an immediate decrease in unemployment when domestic GDP experiences
a shock, but the trajectory going forward is notably more transitory for the models with

13



restrictions as compared to the unrestricted model’s response.
According to our empirical results there are sometimes large differences depending on

the restrictions imposed. The results also clearly illustrate that occasionally models with
weakly exogenous restrictions seem to behave similarly with or without restricted short-
run dynamics, but that is not always the case. Hence, it is important to consider models
enforcing restrictions on both the short-run adjustment parameter α as well as on the short-
run dynamics Γ. While a model with no restrictions can still be consistently estimated under
the setting in Section 2, by the nature of a small open economy the act of imposing such
restrictions is uncontroversial for many applications.

4.2 A Granger Non-Causal Model for Sweden

Our second example originates from the work by Jacobson et al. (2001) who analyzed mon-
etary policy and inflation in Sweden. Jacobson et al. (2001) imposed restrictions that are
consistent with economic theory on the long-run relations (i.e. the cointegrating vectors)
and demonstrated that these restrictions were useful both for policy analysis as well as for
forecasting. We use the same dataset as Jacobson et al. (2001) and the variables are dis-
played in Table 2. Jacobson et al. (2001) argued that there should be four stochastic trends
implying three cointegrating relations as there are seven variables in total. Three of the
variables are foreign and four are domestic. The time period is 1972:Q2–1996:Q4 yielding
a total of 99 observations. Additionally, five dummy variables for ’crashes’ and ’changes in
growth’ capturing regime shifts in economic policy are used. The interpretation of the three
cointegrating relations is that the first is a goods market equilibrium, the second is related
to a financial markets equilibrium condition while the third consists of common trends and
equilibrium conditions between the foreign variables. We use the same number of lags (four)
and compare impulse responses from an unrestricted VECM, a VECM with Granger non-
causality and a VECM with Granger non-causality and long-run restrictions.2 All impulse
responses can be found in Figure B3, while a selected subset are shown in Figure 4.

The response of domestic prices to a domestic interest rate shock (top-left panel, i→ p) is
positive in all three models with similar paths along the impulse response horizon. Similarly,
the response of the domestic interest rate to a foreign interest rate shock in the top-right
panel (if → i) is relatively similar across models with the same development, albeit at
slightly different levels. The role of the exogeneity associated with a small open economy is

2The long-run restrictions follow Jacobson et al. (2001). Using the same ordering of variables as in Table
2, β is restricted to

β′ =

β11 1 β12 β13 −1 β14 1
0 β21 −1 β22 β23 1 β24
β31 β32 1 0 0 0 0

 . (32)

The preceding restrictions are overidentifying, and Jacobson et al. (2001) estimate the model using both a
different set of overidentifying restrictions involving more constraints, and a relaxed set of restrictions that
make the above restrictions exactly identifying. Because we compute impulse responses based on αβ′, exact
identification of β still yields the same impulse responses, and so our unrestricted model corresponds to the
model with exact identification used by Jacobson et al. (2001). We stress, however, that we do not consider
any structural identification of shocks, but rather investigate the role of small open economy restrictions on
impulse responses for which a reduced form analysis suffices.
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Figure 3: Examples of impulse responses to 1 SD shocks for the model of the Swedish economy
(Section 4.1). The four lines in the figures represent: unrestricted VECM ( ), weakly
exogenous VECM ( ), VECM with short-run restrictions ( ) and strongly exogenous
VECM ( ).
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Table 2: Granger non-causal model: Jacobson et al. (2001) data

Variable Description

yf Foreign real output, yft = 100 ln(Y f
t ) where Y f

t is German
real GDP in 1991 prices

pf Foreign price levels, pft = 100 ln(P ft ), where P ft is the ge-
ometric sum of Sweden’s 20 most important trading part-
ners weighted by IMF’s TCW index

if Foreign nominal interest rate, ift = 100 ln(1 + Ift /100)

where Ift is the German three-month treasury bills rate
y Swedish real output, yt = 100 ln(Yt) where Yt is Swedish

real GDP in 1991 prices
p Swedish price levels, pt = 100 ln(Pt), where Pt is the quar-

terly average of Swedish CPI
i Swedish nominal interest rate, it = 100 ln(1 + It/100)

where It is the Swedish three-month treasury bills rate
e Nominal exchange rate, et = 100 ln(St) where St is the ge-

ometric sum of the nominal Krona exchange rate of Swe-
den’s top 20 trading partners using the TCW index

Note: The model also includes five dummy variables, see Jacobson
et al. (2001) for details.

clearly visible in the middle-left panel displaying the effect of a domestic price level shock
on foreign interest rates; the unrestricted VAR estimates that the foreign interest rate reacts
positively, whereas the two models with Granger non-causality restrict the response to be
zero. For the response of the domestic price level to a foreign price level shock (middle-right
panel, pf → p), the models exhibit quite different behaviors. The unrestricted VECM shows
a drastic increase in the domestic price level, whereas the Granger non-causal model with
long-run restrictions quickly stabilizes at a much lower (but positive) level. The Granger
non-causal model without any long-run restrictions instead shows a positive response in the
initial periods followed by a slow drift towards its negative asymptote. The bottom-right
panel showing the response of the price level to a real output shock (y → p) reveals again a
more sizable difference between the Granger non-causal models and the unrestricted model,
where the latter indicates a much larger response of prices. Finally, the bottom-right panel
displays how foreign price levels respond to a foreign real output shock. The Granger non-
causal models present positive responses, whereas the unrestricted VAR estimates a negative
response.

In summary, the above presentation of the results makes it clear that small open economy
restrictions can be important for impulse response analysis. The benefit of such restrictions
is that they increase the efficiency of estimation, which may be important due to the small
sample sizes common in applications, and are typically uncontroversial as the property of a
small open economy is widely accepted for many countries.
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Figure 4: Impulse responses to 1 SD shocks for the Granger non-causal model of the Swedish
economy (Section 4.2). The three lines in the figures represent standard VECM ( ),
VECM with Granger non-causality ( ) and VECM with Granger non-causality and long-
run restrictions ( ).
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5 Conclusions

In this paper we have proposed an estimation procedure in the case of exogeneity restrictions
in vector error correction models (VECM). We have focused on the perspective of modeling
small open economies as doing so naturally imposes restrictions on the VECM. A Monte
Carlo simulation study is conducted in order to show the advantages of imposing such re-
strictions. We find that it is beneficial with respect to the estimation of impulse responses to
impose the full suite of restrictions in the model when the underlying model is in accordance
with the small open economy property. Ignoring restrictions will most often substantially in-
crease the MSE. Using one set of restrictions is typically notably better than no restrictions,
but worse than using both. We apply our method to two Swedish macroeconomic datasets
and estimate one VECM with a strongly exogenous foreign variable, and one VECM with a
foreign block of variables for which the domestic variables are Granger non-causal. The em-
pirical examples demonstrate that vastly different results betweenbmatrix the models with
or without restrictions can be obtained. The advantage of the small open economy restric-
tions is that they are often uncontroversial, and our approach thus offers a useful method
for incorporating undebatable economic theory into the statistical estimation of the model.
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*Appendix

A Simulation Details

The parameters of the data-generating process are presented in (33) and the roots of the model are displayed
in Figure A1.

α =


0 0
0 0

0.2785 0.5469
−0.5 0.25
0.25 −0.5

 , β =


0.8147 0.9134
0.9058 0.6324
0.127 0.0975

1 0
0 1



Ω =


1 0.25 0.0625 0.0156 0.0039

0.25 1 0.25 0.0625 0.0156
0.0625 0.25 1 0.25 0.0625
0.0156 0.0625 0.25 1 0.25
0.0039 0.0156 0.0625 0.25 1



Γ1 =


0.2288 −0.1712 0 0 0
0.2324 0.2353 0 0 0
0.2286 −0.1791 0.1461 −0.2321 0.0894
−0.0073 −0.0391 0.2297 0.1746 0.1289
0.1501 0.2079 0.0779 0.217 0.1216

 ,

Γ2 =


−0.0269 −0.0822 0 0 0
0.0389 0.0515 0 0 0
−0.117 −0.1007 −0.0457 −0.0153 0.0738
−0.0558 0.0809 0.1126 −0.0296 −0.0783
−0.1135 0.0487 −0.1164 0.0664 −0.0026

 ,

Γ3 =


−0.0136 0.0523 0 0 0
0.0366 0.0637 0 0 0
−0.056 −0.0843 0.1149 −0.069 0.0015
0.0449 −0.0953 −0.0399 0.0628 0.0498
0.0388 −4e− 04 0.0213 −0.0612 0.0977

 .

(33)
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Figure A1: Characteristics of the simulation study’s data-generating process. Left: inverse
roots of AR characteristic polynomial. Right: absolute values of eigenvalues in decreasing
order. As noted in the text, there are two cointegrating relations and thus three unit roots.
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C Proof of Proposition 1

Following Magnus (1978); Groen and Kleibergen (2003) the asymptotic distributions of the seemingly unre-
lated regressions-type estimators used are the same after one iteration as after full convergence. Moreover,
because the model parameters can be consistently estimated in the full model and the iterative procedure
produces non-decreasing steps on the log-likelihood surface (Boswijk, 1995; Groen and Kleibergen, 2003;
Boswijk and Doornik, 2004) the iterative procedure is also consistent.

To derive the asymptotic distributions, we first introduce a lemma with standard results.

Lemma 1. Let Wk(u) = Ω1/2Bk(u) where Bk(u) is a standard k-dimensional Brownian motion. Fur-

thermore, let C = β⊥(α′⊥Γβ⊥)α′⊥ where Γ = I −∑p−1
i=1 Γi and let Gk(u) = CWk(u). Moreover, define

ΫT = diag(T−1Ik, T
−1/2Ip(k−s)). Then

T−1/2β′⊥y[Tu]
d−→ CWk(u) (34)

T−1/2∆y[Tu]
p−→ 0 (35)

ΫT Ỹ
′
−1Ỹ−1ΫT

p−→
[∫

Gk(u)Gk(u)′du 0
0 Σ00

]
(36)

ΫT Ỹ
′
−1ε

d−→
[∫

GkdW
′
k

ξ

]
(37)

T−1β′ỹ′−1ỹ−1β
p−→ Σββ (38)

T−1β′ỹ′−1∆Ỹ
p−→ Σβ0 (39)

T−1∆Ỹ ′∆Ỹ
p−→ Σ00 (40)

T−1/2
[
β′ỹ′−1ε̃
∆Y ′ε̃

]
d−→
[
ζ
ξ

]
(41)

where

vec

[
ζ
ξ

]
∼ Nk(r+pk)(0,Ω⊗ Σ) (42)

Σ =

[
Σββ Σβ0
Σ0β Σ00

]
. (43)

Proof. These results are standard in the literature and follow from Johansen (1995, Lemma 10.2–10.3) and
Hamilton (1994, Proposition 18.1).

Before deriving the asymptotic distributions, a note on notation is in order. We let (Ω−1)ij denote the
(i, j)th block of Ω−1 where i, j = 1, 2. Likewise, (Ω−1)i· refers to the ith block of rows across all columns,
i.e.

[
(Ω−1)i1 (Ω−1)i2

]
, and vice versa for (Ω−1)·j . A similar notation is also used for α, where α·2 refers

to the second block of columns (across all rows), as well as for Σββ , where Σββ,11 is the top-left block and
Σββ,1· the upper block of Σββ .

C.1 Asymptotic Distribution of π̂α Under Granger Non-Causality

Let

α =

[
α11 α12 = 0s×r2
α21 α22

]
(44)

where α11 is s×r1, α21 is (k−s)×r1 and α22 is (k−s)×r2, where r1 denotes cointegrating relations that enter
the foreign equations. For convenience, let also α1 = (α11, α12), α2 = (α21, α22) and Γd =

[
Γ221 · · · Γ22p

]
.
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The zero restrictions can be imposed by the following decomposition

vec(Π′) =

vec(αβ′)

vec

[
0

Γd

] =

 (β ⊗ Ik) 0rk×p(k−s)2

0pk(k−s)×rk Ip(k−s) ⊗
[
0s×k−s
Ik−s

]
︸ ︷︷ ︸

F1,β(β)

(45)

×

Kr,k

Is ⊗ [ Ir1
0r2×r1

]
0r(k−s)×r1s

Ks,r1 Ir ⊗
[
0s×k−s
Ik−s

]
0rk×p(k−s)2

0p(k−s)2×r1s 0p(k−s)2×r(k−s) Ip(k−s)2


︸ ︷︷ ︸

F2,β

vec(α11)
vec(α2)
vec(Γd)

 . (46)

Let F0,β(β) = F1,β(β)F2,β . Using that

Ỹ ′−1 ⊗ Ik =

[
ỹ′−1 ⊗ Ik
∆Ỹ ′ ⊗ Ik

]
(47)

and

F1,β(β)′(Ỹ ′−1 ⊗ Ik)KT,k =

[
β′ỹ′−1 ⊗ Ik

∆Y ′ ⊗ (0k−s×s, Ik−s)

]
KT,k (48)

gives

F0,β(β)′(Ik ⊗ Ỹ ′−1) = F ′2,βF1,β(β)′(Ỹ ′−1 ⊗ Ik)KT,k (49)

= F ′2,β

[
β′ỹ′−1 ⊗ Ik

∆Y ′ ⊗
[
0k−s×s Ik−s

]]KT,k (50)

=

Kr1,s

[
Is ⊗

[
Ir1 0r1×r2

]
0r1s×r(k−s)

]
Kk,r 0r1s×p(k−s)2

Ir ⊗
[
0k−s×s Ik−s

]
0r(k−s)×p(k−s)2

0p(k−s)2×rk Ip(k−s)2

 (51)

×
[

β′ỹ′−1 ⊗ Ik
∆Y ′ ⊗

[
0k−s×s Ik−s

]]KT,k (52)

=

Kr1,s

[
Is ⊗

[
Ir1 0r1×r2

]
0r1s×r(k−s)

]
Kk,r(β

′ỹ′−1 ⊗ Ik)(
Ir ⊗

[
0k−s×s Ik−s

])
⊗ (β′ỹ′−1 ⊗ Ik)

∆Y ′ ⊗
[
0k−s×s Ik−s

]
KT,k (53)

=

Kr1,s

[
Is ⊗

[
Ir1 0r1×r2

]
0r1s×r(k−s)

] [Is ⊗ β′ỹ′−1 0
0 Ik−s ⊗ β′ỹ′−1

]
Kk,T

β′ỹ′−1 ⊗
[
0k−s×s Ik−s

]
∆Y ′ ⊗

[
0k−s×s Ik−s

]
KT,k (54)

=

Kr1,s

[
Is ⊗ β′1ỹ′−1 0r1s×T (k−s)

]
Kk,T

β′ỹ′−1 ⊗
[
0k−s×s Ik−s

]
∆Y ′ ⊗

[
0k−s×s Ik−s

]
KT,k (55)

and it follows that

T−1F0,β(β)′
[
Ω−1 ⊗

(
Ỹ ′−1Ỹ−1

)]
F0,β(β) (56)

= T−1F ′2,βF1,β(β)′(Ỹ ′−1 ⊗ Ik)KT,k

(
Ω−1 ⊗ IT

)
Kk,T (Ỹ−1 ⊗ Ik)F1,β(β)F2,β (57)

= T−1

Kr1,s

[
Is ⊗ β′1ỹ′−1 0r1s×T (k−s)

]
Kk,T

β′ỹ′−1 ⊗
[
0k−s×s Ik−s

]
∆Y ′ ⊗

[
0k−s×s Ik−s

]
 (IT ⊗ Ω−1) (58)

×

Kr1,s

[
Is ⊗ β′1ỹ′−1 0r1s×T (k−s)

]
Kk,T

β′ỹ′−1 ⊗
[
0k−s×s Ik−s

]
∆Y ′ ⊗

[
0k−s×s Ik−s

]
′ . (59)
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The resulting matrix is a 3× 3 symmetric block matrix. The blocks are in turn:

(1, 1) = Kr1,s

[
Is ⊗ β′1ỹ′−1 0r1s×T (k−s)

]
Kk,T (IT ⊗ Ω−1)KT,k

[
Is ⊗ ỹ−1β1
0T (k−s)×r1s

]
Ks,r1

= Kr1,s

[
Is ⊗ β′1ỹ′−1 0r1s×T (k−s)

] [(Ω−1)11 ⊗ IT (Ω−1)12 ⊗ IT
(Ω−1)21 ⊗ IT (Ω−1)22 ⊗ IT

]
×
[
Is ⊗ ỹ−1β1
0T (k−s)×r1s

]
Ks,r1

= Kr1,s(Is ⊗ β′1ỹ′−1)((Ω−1)11 ⊗ IT )(Is ⊗ ỹ−1β1)Ks,r1

= β′1ỹ
′
−1ỹ−1β1 ⊗ (Ω−1)11

(2, 1) =
(
β′ỹ′−1 ⊗

[
0k−s×s Ik−s

])
(IT ⊗ Ω−1)KT,k

[
Is ⊗ ỹ−1β1
0T (k−s)×r1s

]
Ks,r1

= Kr,k−s
([

0k−s×s Ik−s
]
⊗ β′ỹ′−1

) [(Ω−1)11 ⊗ ỹ−1β1
(Ω−1)21 ⊗ ỹ−1β1

]
Ks,r1

= β′ỹ′−1ỹ−1β1 ⊗ (Ω−1)21

(3, 1) =
(
∆Y ′ ⊗

[
0k−s×s Ik−s

])
(IT ⊗ Ω−1)KT,k

[
Is ⊗ ỹ−1β1
0T (k−s)×r1s

]
Ks,r1

= Kr,k−s
([

0k−s×s Ik−s
]
⊗∆Y ′

) [(Ω−1)11 ⊗ ỹ−1β1
(Ω−1)21 ⊗ ỹ−1β1

]
Ks,r1

= ∆Y ′ỹ−1β1 ⊗ (Ω−1)21

(2, 2) =
(
β′ỹ′−1 ⊗

[
0k−s×s Ik−s

])
(IT ⊗ Ω−1)

(
ỹ−1β ⊗

[
0s×k−s
Ik−s

])
= β′ỹ′−1ỹ−1β ⊗ (Ω−1)22

(3, 2) =
(
∆Y ′ ⊗

[
0k−s×s Ik−s

])
(IT ⊗ Ω−1)

(
ỹ−1β ⊗

[
0s×k−s
Ik−s

])
= ∆Y ′ỹ−1β ⊗ (Ω−1)22

(3, 3) =
(
∆Y ′ ⊗

[
0k−s×s Ik−s

])
(IT ⊗ Ω−1)

(
∆Y ⊗

[
0s×k−s
Ik−s

])
= ∆Y ′∆Y ⊗ (Ω−1)22

(60)

resulting in

T−1F0,β(β)
[
Ω−1 ⊗

(
Ỹ ′−1Ỹ−1

)]
F0,β(β) (61)

= T−1

β′1ỹ′−1ỹ−1β1 ⊗ (Ω−1)11
β′ỹ′−1ỹ−1β1 ⊗ (Ω−1)21 β′ỹ′−1ỹ−1β ⊗ (Ω−1)22
∆Y ′ỹ−1β1 ⊗ (Ω−1)21 ∆Y ′ỹ−1β ⊗ (Ω−1)22 ∆Y ′∆Y ⊗ (Ω−1)22

 . (62)

By Lemma 1

T−1F0,β(β)
[
Ω−1 ⊗

(
Ỹ ′−1Ỹ−1

)]
F0,β(β)

p−→ (63)Σββ,11 ⊗ (Ω−1)11 Σββ,1· ⊗ (Ω−1)12 Σβ0,1· ⊗ (Ω−1)12
Σββ,·1 ⊗ (Ω−1)21 Σββ ⊗ (Ω−1)22 Σβ0 ⊗ (Ω−1)22
Σ0β,·1 ⊗ (Ω−1)21 Σ0β ⊗ (Ω−1)22 Σ00 ⊗ (Ω−1)22

 . (64)
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Furthermore,

F1,β(β)′Kk+p(k−s),k

(
Ω−1 ⊗ Ỹ ′−1

)
vec (ε̃) (65)

= F1,β(β)′
(
Ỹ ′−1 ⊗ Ω−1

)
KT,k vec (ε̃) (66)

=

[
β′ỹ′−1 ⊗ Ω−1(

Ip(k−s) ⊗
[
0k−s×s Ik−s

])
(∆Y ′ ⊗ Ω−1)

]
KT,k vec (ε̃) (67)

=

[
Irk 0
0 Ip(k−s) ⊗

[
0k−s×s Ik−s

]]([β′ỹ′−1
∆Y ′

]
⊗ Ω−1

)
KT,k vec (ε̃) (68)

=

[
Irk 0
0 Ip(k−s) ⊗

[
0k−s×s Ik−s

]]Kr+p(k−s),k

(
Ω−1 ⊗

[
β′ỹ′−1
∆Y ′

])
vec (ε̃) (69)

=

[
Irk 0
0 Ip(k−s) ⊗

[
0k−s×s Ik−s

]]Kr+p(k−s),k
(
Ω−1 ⊗ Ir+p(k−s)

)
vec

[
β′ỹ′−1ε̃
∆Y ′ε̃

]
(70)

=

[
Irk 0
0 Ip(k−s) ⊗

[
0k−s×s Ik−s

]] (Ir+p(k−s) ⊗ Ω−1
)
Kr+p(k−s),k vec

[
β′ỹ′−1ε̃
∆Y ′ε̃

]
(71)

=

[
Ir ⊗ Ω−1 0

0
(
Ip(k−s) ⊗

[
0k−s×s Ik−s

]) (
Ip(k−s) ⊗ Ω−1

)]Kr+p(k−s),k vec

[
β′ỹ′−1ε̃
∆Y ′ε̃

]
(72)

=

[
Ir ⊗ Ω−1 0

0 Ip(k−s) ⊗ (Ω−1)2·

]
Kr+p(k−s),k vec

[
β′ỹ′−1ε̃
∆Y ′ε̃

]
(73)

and so

F0,β(β)′
(
Ω−1 ⊗ Ik+p(k−s)

)
vec
(
Ỹ ′−1ε̃

)
(74)

= F ′2,βF1,β(β)′Kk+p(k−s),k

(
Ω−1 ⊗ Ỹ ′−1

)
vec (ε̃) (75)

= F ′2,β

[
Ir ⊗ Ω−1 0rk×pk(k−s)

0p(k−s)2×rk Ip(k−s) ⊗ (Ω−1)2·

]
Kr+p(k−s),k vec

[
β′ỹ′−1ε̃
∆Y ′ε̃

]
(76)

=

Kr1,s

[
Is ⊗

[
Ir1 0r1×r2

]
0r1s×r(k−s)

]
Kk,r 0r1s×p(k−s)2

Ir ⊗
[
0k−s×s Ik−s

]
0r(k−s)×p(k−s)2

0p(k−s)2×rk Ip(k−s)2

 (77)

×
[
Ir ⊗ Ω−1 0rk×pk(k−s)

0p(k−s)2×rk Ip(k−s) ⊗ (Ω−1)2·

]
Kr+p(k−s),k vec

[
β′ỹ′−1ε̃
∆Y ′ε̃

]
(78)

=

Kr1,s

[
Is ⊗

[
Ir1 0r1×r2

]
0r1s×r(k−s)

]
(Ω−1 ⊗ Ir)Kr,k 0r1s×pk(k−s)

Ir ⊗ (Ω−1)2· 0r(k−s)×pk(k−s)
0p(k−s)2×rk Ip(k−s) ⊗ (Ω−1)2·

 (79)

×Kr+p(k−s),k vec

[
β′ỹ′−1ε̃
∆Y ′ε̃

]
(80)

=

Kr1,s

(
Ω−11· ⊗

[
Ir1 0r1×r2

])
Kr,k 0r1s×pk(k−s)

Ir ⊗ (Ω−1)2· 0r(k−s)×pk(k−s)
0p(k−s)2×rk Ip(k−s) ⊗ (Ω−1)2·

Kr+p(k−s),k vec

[
β′ỹ′−1ε̃
∆Y ′ε̃

]
. (81)

=

[Ir1 0r1×r2
]
⊗ Ω−11· 0r1s×pk(k−s)

Ir ⊗ (Ω−1)2· 0r(k−s)×pk(k−s)
0p(k−s)2×rk Ip(k−s) ⊗ (Ω−1)2·

Kr+p(k−s),k vec

[
β′ỹ′−1ε̃
∆Y ′ε̃

]
. (82)

Consequently, by Lemma 1

T−1/2F0,β(β)′
(
Ω−1 ⊗ Ik+p(k−s)

)
vec
(
Ỹ ′−1ε̃

)
d−→

Nr1s+r(k−s)+p(k−s)2

0,

Σββ,11 ⊗ (Ω−1)11 Σββ,1· ⊗ (Ω−1)12 Σβ0,1· ⊗ (Ω−1)12
Σββ,·1 ⊗ (Ω−1)21 Σββ ⊗ (Ω−1)22 Σβ0 ⊗ (Ω−1)22
Σ0β,·1 ⊗ (Ω−1)21 Σ0β ⊗ (Ω−1)22 Σ00 ⊗ (Ω−1)22

 .
(83)
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The asymptotic covariance matrix in (83) follows from T−1/2 vec

[
β′ỹ′−1ε̃
∆Y ′ε̃

]
d−→ vec

[
ζ
ξ

]
in (82) by Lemma

1, where also the variance of Kr+p(k−s),k vec

[
ζ
ξ

]
= vec

[
ζ ′ ξ′

]
is Σ ⊗ Ω. The variance in the asymptotic

distribution in (83) then comes from[Ir1 0r1×r2
]
⊗ Ω−11· 0r1s×pk(k−s)

Ir ⊗ (Ω−1)2· 0r(k−s)×pk(k−s)
0p(k−s)2×rk Ip(k−s) ⊗ (Ω−1)2·

Σ⊗ Ω (84)

×

[Ir1 0r1×r2
]
⊗ Ω−11· 0r1s×pk(k−s)

Ir ⊗ (Ω−1)2· 0r(k−s)×pk(k−s)
0p(k−s)2×rk Ip(k−s) ⊗ (Ω−1)2·

′ (85)

=

Σββ,1· ⊗
[
Is 0s×k−s

]
Σβ0,1· ⊗

[
Is 0s×k−s

]
Σββ ⊗

[
0k−s×s Ik−s

]
Σβ0 ⊗

[
0k−s×s Ik−s

]
Σ0β ⊗

[
0k−s×s Ik−s

]
Σ00 ⊗

[
0k−s×s Ik−s

]
 (86)

×

[Ir1 0r1×r2
]
⊗ Ω−11· 0r1s×pk(k−s)

Ir ⊗ (Ω−1)2· 0r(k−s)×pk(k−s)
0p(k−s)2×rk Ip(k−s) ⊗ (Ω−1)2·

′ (87)

=

Σββ,11 ⊗ (Ω−1)11 Σββ,1· ⊗ (Ω−1)12 Σβ0,1· ⊗ (Ω−1)12
Σββ,·1 ⊗ (Ω−1)21 Σββ ⊗ (Ω−1)22 Σβ0 ⊗ (Ω−1)22
Σ0β,·1 ⊗ (Ω−1)21 Σ0β ⊗ (Ω−1)22 Σ00 ⊗ (Ω−1)22

 . (88)

As the (scaled) estimator can be written as the inverse of (64) times (83), the asymptotic distribution
of the estimator is

√
T (π̂α − πα)

d−→ Nr1s+r(k−s)+p(k−s)2(0, V ) (89)

where

V =

Σββ,11 ⊗ (Ω−1)11 Σββ,1· ⊗ (Ω−1)12 Σβ0,1· ⊗ (Ω−1)12
Σββ,·1 ⊗ (Ω−1)21 Σββ ⊗ (Ω−1)22 Σβ0 ⊗ (Ω−1)22
Σ0β,·1 ⊗ (Ω−1)21 Σ0β ⊗ (Ω−1)22 Σ00 ⊗ (Ω−1)22

−1 . (90)

C.2 Asymptotic Distribution of π̂β Under Granger Non-Causality

Let

β =

[
β11 β12

β21 = 0k−s×r1 β22

]
(91)

where β11 is s× r1, β21 is k− s× r1, β12 is s× r2 and β22 is (k− s)× r2. r1 denotes cointegrating relations
which enter the foreign variables. For convenience, let also β1 = (β11, β12) and β2 = (β21, β22).

The zero restrictions can be enforced by the following decomposition

vec(Π)′ =

vec(αβ′)

vec

[
0

Γd

] (92)

=


[

Is
0k−s×s

]
⊗ α

0ks×r2(k−s)

Ik−s ⊗ α
[
0r1×r2
Ir2

]
0r(k−s)×p(k−s)2

0pk(k−s)×rs 0pk(k−s)×r2(k−s) Ip(k−s) ⊗
[
0s×k−s
Ik−s

]


︸ ︷︷ ︸
F2,α(α)

 vec(β′1)
vec(β′22)
vec(Γd)

 . (93)
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Let

F0,α(α) =
(
I ⊗ Ỹ ′−1Ỹ−1

)
F1,α(α) =

(
I ⊗ Ỹ ′−1Ỹ−1

)
Kk,k+p(k−s)F2,α(α). (94)

It is then possible to rewrite (19) as

π̂β = πβ +
{
F1,α(α)′

[
Ω−1 ⊗

(
Ỹ ′−1Ỹ−1

)]
F1,α(α)

}−1
F1,α(α)′

(
Ω−1 ⊗ I

)
vec
(
Ỹ ′−1ε̃

)
(95)

by using the identity (I⊗A)(B⊗A−1)(I⊗A) = (B⊗A). Consider now ΥT = diag(T−1Irs+r2(k−s), T
−1/2Ip(k−s)2)

and

ΥTF1,α(α)′ = ΥTF2,α(α)′Kk+p(k−s),k = F2,α(α)′(ΫT ⊗ Ik)Kk+p(k−s),k. (96)

Additionally, we can write

(Ω−1 ⊗ Ỹ ′−1Ỹ ) = (Ik ⊗ Ỹ ′−1)(Ω−1 ⊗ IT )(Ik ⊗ Ỹ−1). (97)

By Magnus and Neudecker (1979, Theorem 3.1(viii)) we also have

Kk+p(k−s),k(Ik ⊗ Ỹ ′−1) = (Ỹ ′−1 ⊗ Ik)KT,k (98)

and hence it follows that

(ΫT ⊗ Ik)Kk+p(k−s),k(Ik ⊗ Ỹ ′−1) = (ΫT ⊗ Ik)(Ỹ ′−1 ⊗ Ik)KT,k

= (ΫT Ỹ
′
−1 ⊗ Ik)KT,k

(99)

By symmetry, (96) and (99) imply that{
ΥTF1,α(α)′

[
Ω−1 ⊗

(
Ỹ ′−1Ỹ−1

)]
F1,α(α)ΥT

}−1
(100)

=
{
F1,α(α)′

[
Ω−1 ⊗

(
ΫT Ỹ

′
−1Ỹ−1ΫT

)]
F1,α(α)

}−1
(101)

By Lemma 1 and the continuous mapping theorem, we obtain{
ΥTF1,α(α)′

[
Ω−1 ⊗

(
Ỹ ′−1Ỹ−1

)]
F1,α(α)ΥT

}−1
p−→
{
F1,α(α)′

[
Ω−1 ⊗

[∫
Gk(u)Gk(u)′du 0k×p(k−s)

0p(k−s)×k Σ00

]]
F1,α(α)

}−1 (102)

Furthermore, we can write

ΥTF1,α(α)′
(
Ω−1 ⊗ Ik+p(k−s)

)
vec
(
Ỹ ′−1ε

)
= F2,α(α)′(ΫT ⊗ Ik)Kk+p(k−s),k

(
Ω−1 ⊗ Ik+p(k−s)

)
vec
(
Ỹ ′−1ε

)
,

(103)

where also

(ΫT ⊗ Ik)Kk+p(k−s),k
(
Ω−1 ⊗ Ik+p(k−s)

)
vec
(
Ỹ ′−1ε

)
= Kk+p(k−s),k(Ik ⊗ ΫT )

(
Ω−1 ⊗ Ik+p(k−s)

)
vec
(
Ỹ ′−1ε

)
= Kk+p(k−s),k(Ω−1 ⊗ ΫT ) vec

(
Ỹ ′−1ε

)
= Kk+p(k−s),k

(
Ω−1 ⊗ Ik+p(k−s)

)
vec
(

ΫT Ỹ
′
−1ε
)
.

(104)

Thus, we have by (103), (104) and the continuous mapping theorem

ΥTF1,α(α)′
(
Ω−1 ⊗ Ik+p(k−s)

)
vec
(
Ỹ ′−1ε

)
d−→ F1,α(α)

(
Ω−1 ⊗ Ik+p(k−s)

)
vec

[∫
GkdW

′
k

ξ

]
.

(105)
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Taking (102) and (105) together results in

Υ−1T (π̂β − πβ) =
{

ΥTF1,α(α)′
[
Ω−1 ⊗

(
Ỹ ′−1Ỹ−1

)]
F1,α(α)ΥT

}−1
×ΥTF1,α(α)′

(
Ω−1 ⊗ Ik+p(k−s)

)
vec
(
Ỹ ′−1ε

)
d−→
{
F1,α(α)′

[
Ω−1 ⊗

[∫
Gk(u)Gk(u)′du 0k×p(k−s)

0p(k−s)×k Σ

]]
F1,α(α)

}−1
× F1,α(α)′

(
Ω−1 ⊗ Ik+p(k−s)

)
vec

[∫
GkdW

′
k

ξ

]
(106)

Next,

F1,α(α)′
[
Ω−1 ⊗

[∫
Gk(u)Gk(u)′du 0k×p(k−s)

0p(k−s)×k Σ00

]]
F1,α(α)

= F2,α(α)′
([∫

Gk(u)Gk(u)′du 0k×p(k−s)
0p(k−s)×k Σ00

]
⊗ Ω−1

)
F2,α(α)

= F2,α(α)′
[(∫

Gk(u)Gk(u)′du
)
⊗ Ω−1 0k2×pk(k−s)

0pk(k−s)×k2 Σ00 ⊗ Ω−1

]
F2,α(α)

= ∫ Gk,1(u)Gk,1(u)′du⊗ α′Ω−1α
∫
Gk,1(u)Gk,2(u)′du⊗ α′Ω−1α·2 0rs×pk(k−s)∫

Gk,2(u)Gk,1(u)′du⊗ α′·2Ω−1α
∫
Gk,2(u)Gk,2(u)′du⊗ α′·2Ω−1α·2 0rs×pk(k−s)

0pk(k−s)×rs 0pk(k−s)×r(k−s) Σ00 ⊗ (Ω−1)22



(107)

Similarly,

F1,α(α)′
(
Ω−1 ⊗ Ik+p(k−s)

)
vec

[∫
GkdW

′
k

ξ

]
(108)

= F2,α(α)′ vec
[
Ω−1/2

∫
dBkG

′
k Ω−1ξ′

]
(109)

=

 [
Is 0s×k−s

]
⊗ α′ vec

(
Ω−1/2

∫
dBkG

′
k

)[
0r2(k−s)×ks Ik−s ⊗ α′·2

]
vec
(
Ω−1/2

∫
dBkG

′
k

)
Ip(k−s) ⊗

[
0k−s×s Ik−s

]
vec
(
Ω−1ξ′

)
 (110)

=


vec
(
α′Ω−1/2

∫
dBkG

′
k,1

)
vec
(
α′·2Ω−1/2

∫
dBkG

′
k,2

)
vec
(
(Ω−1)2·ξ

′)
 . (111)

Thus,

Υ−1T (π̂β − πβ)
d−→ (112) ∫ Gk,1(u)Gk,1(u)′du⊗ α′Ω−1α

∫
Gk,1(u)Gk,2(u)′du⊗ α′Ω−1α·2 0rs×pk(k−s)∫

Gk,2(u)Gk,1(u)′du⊗ α′·2Ω−1α
∫
Gk,2(u)Gk,2(u)′du⊗ α′·2Ω−1α·2 0rs×pk(k−s)

0pk(k−s)×rs 0pk(k−s)×r(k−s) Σ00 ⊗ (Ω−1)22

−1 (113)

×


vec
(
α′Ω−1/2

∫
dBkG

′
k,1

)
vec
(
α′·2Ω−1/2

∫
dBkG

′
k,2

)
vec
(
(Ω−1)2·ξ

′)
 (114)
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